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The asymptotic behaviour of the Nevanlinna characteristic for loxodromic functions as well
as the Nevanlinna type characteristic for elliptic functions are investigated.

А. Я. Християнин, А. А. Кондратюк, Н. Б. Сокульская. Характеристики роста локсо-
дромных и эллиптических функций // Мат. Студiї. – 2012. – Т.37, №1. – C.52–57.

Исследовано асимптотическое поведение характеристики Неванлинны локсодромных
функций, а также характеристики роста типа Неванлинны эллиптических функций.

1. Introduction. Let C∗ = C\{0} be the punctured plane. The function z = e2πs maps the
complex plane C onto C∗. That is C∗ = exp{2πC}. If we denote z = reiϕ, s = σ + it, then

σ =
log r

2π
, t =

ϕ

2π
.

We will call the couples (σ, t) log-polar coordinates in C∗, z = e2π(σ+it). These coordinates are
local. However e2πit = e2πi(t−[t]), where [t] denotes the integer part of t. The function t 7→ t−[t]
maps one-to-one the one-dimentional torus T = R/Z onto [0, 1). Hence C∗ = R×T. Thus the
global coordinates in C∗ are (σ, t) where σ ∈ R, t ∈ T. This means that each function f on
C∗ may be considered as a periodic in log-polar coordinates, that is in C, with the period i,
f(e2πs) = g(s), g(s + i) = f(e2π(s+i)) = f(z), and vice versa. If moreover g(s) has another
period ω1, say 1, then g(s + 1) = g(s) implies f(e2πe2πs) = f(e2πs), i. e. f(e2πz) = f(z).
This means that f is multiplicatively periodic of multiplicator e2π and g is a function on
two-dimensional torus T2 = R2/Z2.

More generally, after the homotety s 7→ s
ω
, taking an arbitrary period ω1 > 0 we obtain

a double-periodic function g with the period lattice Λ = Zω1 + Zω2, where ω2 = iω, ω > 0,
and a multiplicatively periodic function f of multiplicator 1

q
= e2π

ω1
ω = e

2πi
ω1
ω2 , 0 < q <

1. In the general case the connection between a multiplicatively periodic function f(z) of
multiplicator q and the associated double periodic function g(s) which admits the period
lattice Λ with complex numbers ω1, ω2 is the following

f(e
2πi
ω2
s
) = g(s),

1

q
= e

2πi
ω1
ω2 , Im

ω1

ω2

< 0.
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The theory of meromorphic multiplicatively periodic functions was elaborated by O. Rau-
senberger ([1]). G. Valiron ([2]) called these functions loxodromic because the points in which
such a function in the case of non-real q acquires the same value lay on logarithmic spirals.
The images of these last on the Riemann sphere intersect each meridian under the same
angle, and are called loxodromic curves (λoξoζ — oblique, δρoµoζ — way). In log-polar
coordinates they are straight lines.

Double-periodic meromorphic functions are elliptic functions and more known due to the
works of K. Jacobi, N. Abel, K. Weierstrass.

Summarizing we can conclude that loxodromic meromorphic functions give a simple
construction of elliptic functions. Furthermore, the recent research give its various applicati-
ons ([3]–[6]), and show that interest to these objects increases. We study here the growth
characteristics of both loxodromic and elliptic functions.
2. Growth characteristics of loxodromic functions.

Definition 1 ([1], [2]). A meromorphic function f in the punctured plane C∗ is called
loxodromic of multiplicator q if it satisfies the condition

f(qz) = f(z), 0 < |q| < 1, z ∈ C∗. (1)

It is clear that the loxodromic functions of multiplicator q form a field which is denoted
by Lq ([6]).

The Nevanlinna type characteristics of meromorphic in C∗ functions were introduced and
studied in [7], [8] (see also [9]).

Namely, Nevanlinna characteristics of f is defined by the relation

T0(r, f) = N0(r, f) +m0(r, f), 1 ≤ r,

where

m0(r, f) = m(r, f) +m

(
1

r
, f

)
− 2m(1, f), m(r, f) =

1

2π

∫ π

0

log+ |f(reiϕ)|dϕ,

a+ = max(a, 0), N0(r, f) =

∫ r

1

n0(r, f)

r
dr,

and n0(r, f) is the counting function of poles of f in the annulus {z : 1/r < |z| ≤ r}.
Theorem A ([7], [9]). The characteristic T0(r, f) is non-negative, continuous, non-decreasing
and convex with respect to log r on [1; +∞), T (1, f) = 0.

Recall some properties of functions from Lq ([1], [2], [6]). Denote Ar = {z : |q|r < |z| ≤ r}.
Each non-constant loxodromic meromorphic function of multiplicator q has at least two poles
in Ar. The number of poles of f is the same in each Ar. Denote this number by m. It is
called the order of f . It follows from (1) that f(qnz) = f(z), n ∈ Z.
Theorem 1. Let f belong to Lq and have order m. Then

T0(r, f) =
m

log 1
|q|

log2 r +O(log r), r > 1, (2)

where

|O(log r)| ≤ 2m log r + C, (3)

C = max

{
T0

(
1

|q|
, f

)
, 2m(1, f)

}
.
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Proof. If |q|1−n < r ≤ |q|−n, n ∈ N, then

2m

(
log r

log 1
|q|
− 1

)
≤ 2m(n− 1) ≤ n0(r, f) ≤ 2mn ≤ 2m

(
log r

log 1
|q|

+ 1

)
.

Therefore,

mlog2 r

log 1
|q|
− 2m log r ≤ N0(r, f) ≤ mlog2 r

log 1
|q|

+ 2m log r. (4)

The function f ∈ Lq is determined by its values in A 1
|q|
. Thus,

− 2m(1, f) ≤ m0(r, f) ≤ T0

(
1

|q|
, f

)
. (5)

The relations (2) and (3) follow from (4) and (5) that finishes the proof.

Theorem 1 and Theorem 10.1 from [9] give another way to represent a loxodromic function
as follows.

The number of zeroes of f ∈ Lq in A1 coincides with the number of its poles in Ar ([2]).
Denote the zeroes of f in Ar by a1, a2, ..., am and its poles by b1, b2, ..., bm. Then the rela-
tion (1) implies zj = akq

n, wj = bkq
n, n ∈ Z, where {zj} are zeroes and {ωj} are poles

of f.
Let

z̃j =

{
zj, if |zj| > 1,
1
zj
, if |zj| ≤ 1,

w̃j =

{
wj, if |wj| > 1,
1
wj
, if |wj| ≤ 1.

The genus of the sequences {z̃j} is defined as the lowest non-negative integer ν such
that

∑
j |z̃j|−ν−1 < +∞. It is easy to see that the genus of z̃j and w̃j is zero, and the

representation (10.2) from [9] acquires the form

f(z) = Czp

∏
|zj |≤1(1−

zj
z

)
∏
|zj |>1(1−

z
zj

)∏
|wj |≤1(1−

wj
w

)
∏
|wj |>1(1−

w
wj

)
, (6)

where p ∈ Z, C is a constant.
Since the products in the relation (6) converge absolutely it can be rewritten in the form

f(z) = Czp
∏m

k=1 P ( z
ak

)∏m
k=1 P ( z

bk
)
, (7)

where P is the Schottky–Klein prime function ([4], [12], [13])

P (z) = (1− z)
∞∏
n=1

(1− qnz)

(
1− qn

z

)
.

There is p ∈ Z ([2], [6]) such that

a1a2...am
b1b2...bm

= qp. (8)
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The relation (1) implies ([2], [6]) that the integer p in (7) must be equal to this one in (8).
We have obtained a known representation (7) of f ∈ Lq ([2], [6]) with p satisfying (8). It

is similar to the representation of a rational function in which P ( z
ak

) and P ( z
bk

) is replaced by
(1− z

ak
) and (1− z

bk
) respectively. A rational function is meromorphic on the Riemann sphere,

which is a compact Riemann surface of genus zero. The Schottky–Klein prime function P ( z
c
)

generalizes ([3]) (1− z
c
) on the genus-one Riemann surfase which is a torus.

Thus, we can consider f ∈ Lq as a rational function on a torus.

3. Growth characteristics of elliptic functions. Since any elliptic function is meromor-
phic in C, its classical Nevanlinna characteristic can be used. But the connection of elli-
ptic functions with loxodrmic allows to consider and study another more intrinsic growth
characteristic of elliptic functions.

As we noted in the introduction, if ω and ω1 are positive numbers, q = exp(−2π ω1

ω
), and

f(z) is a loxodromic meromorphic functions in C∗, then the function

g(s) = f(e
2π
ω
s), s = σ + it =

log r

2π
ω + i

arg z

2π
ω

is elliptic with the period lattice Λ where ω2 = iω. Its Nevanlinna type characteristic acquires
the form

T0(σ, g) = N0(σ, g) +m0(σ, g), (9)

where

m0(σ, g) = m(σ, g) +m(−σ, g)− 2m(0, g),

m(σ, g) =
1

ω

∫ ω

0

log+ |g(σ + it)|dt,N0(σ, g) =
2π

ω

∫ σ

0

n0(η, g)dη,

and n0(η, g) is the counting function of poles of g in the rectangle {σ+ it : −η < σ ≤ η, 0 ≤
t < ω}. If under the above assumptions f has order m, then the number of poles of g are
also m in each rectangle Pσ = {η + it : σ − ω1 < η ≤ σ, 0 ≤ t < ω} what follows from the
property of f mentioned above. We will call this number m the order of g.

Let T0(σ, g) be the Nevanlinna characteristic of g defined by relation (9). Theorem A
and Theorem 1 yield the following result.

Theorem 2. The Nevanlinna characteristic T0(σ, g) of an elliptic function g of order m
with the period lattice Λ = Zω1 + Zω2, where ω1 > 0, ω2 = iω, ω > 0, is non-negative,
non-decreasing, convex function on R+, and

T0(σ, g) =
mω

2πω1

σ2 +O(σ), σ > 0,

where |O(σ)| ≤ 4mπ
ω
σ + C, C = max(T0(ω1, g), 2m(0, g)).

Note that for a meromorphic function f in C∗ a counterpart of Jensen’s Theorem is true
([7], [9]).

N0

(
r,

1

f

)
−N0(r, f) =

1

2π

∫ 2π

0

log |f(reiϕ)|dϕ+
1

2π

∫ 2π

0

log

∣∣∣∣f (eiϕr
)∣∣∣∣dϕ−

− 1

π

∫ 2π

0

log |f(eiϕ)|dϕ, 1 ≤ r. (10)
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For the elliptic function g associated with a loxodromic function f relation (10) acquires the
form

N0

(
σ,

1

g

)
−N0(σ, g) =

1

ω

∫ ω

0

log |g(σ + it)|dt+
1

ω

∫ ω

0

log |g(−σ + it)|dt−

− 2

ω

∫ ω

0

log |g(it)|dt, 0 ≤ σ.

This is a version of Littlewood’s Theorem ([10], [11]) for elliptic functions.
In the general case of two periods ω1, ω2, Im ω1

ω2
< 0, we have

z = e
2πi
ω2
s
, z = reiϕ, s = σ + it, g(s) = f

(
e

2πi
ω2
s
)
.

Hence, z = exp{2π|ω2|−2[(σ Imω2 − tReω2) + i(σReω2 + t Imω2)]}. If |z| = r, then

σ =
Reω2

Imω2

t+
|ω2|2

2π Imω2

log r, ϕ =
2π

Imω2

t− Reω2

Imω2

, dϕ =
2π

Imω2

dt.

The value ϕ = 0 corresponds to t = Reω2

2π
, and ϕ = 2π corresponds to t = Imω2 + Reω2

2π
.

We can assume Imω2 > 0. In the opposite case we replace ω1 and ω2 by −ω1 and −ω2

respectively.
Thus,

m(r, g) =
1

Imω2

Reω2
2π

+Imω2∫
Reω2
2π

log+
∣∣∣g(Reω2

Imω2

t+ it+
|ω2|2

2π Imω2

log r
)∣∣∣dt,

m0(r, g) = m(r, g) +m

(
1

r
, g

)
− 2m(1, g), r ≥ 1. (11)

The counting function n0(r, f) coincides with the counting function n0(r, g) of poles of g
on the set

Pr =

{
σ + it :

Reω2

Imω2

t− |ω2|2

2π Imω2

log r ≤ σ <
Reω2

Imω2

t+
|ω2|2

2π Imω2

log r,

Reω2

2π
≤ t <

Reω2

2π
+ Imω2

}
.

N0(r, g) =
2π Imω2

|ω2|2

∫ log r

0

n0(u, g)du, r ≥ 1. (12)
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Now the Nevanlinna characteristic of g can be written in the form T0(r, g) = m0(r, g) +
N0(r, g), r ≥ 1, wherem0(r, g) and N0(r, g) are given by the relations (11) and (12), respecti-
vely.

If f is loxodromic of multiplicator q = e
−2πiω1

ω2 , g(s) = f(e
2πi
ω2
s
), then g is elliptic with the

period lattice Λ = Zω1 + Zω2, and Theorem 1 yields

T0(r, g) =
m

log 1
|q|

log2 r +O(log r), r > 1.
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